

Tewakdmn Leners. **Vol. 35, No. 24, pp. 4111-4114.1994 Elsevier Science Ltd Priited in Great Britain oo40-4039/94 \$7.00+0.00**

0040-4039(94)E0722-A

Yb/TMS-Br Promoted Homocoupling Reactions of Aliphatic Ketones and a&Unsaturated Ketones

Yuki **Tanlguchi,* Manabu Nakahashi, Tatsuhiro Kuno, Masumi Tsuno, Yoshikazu Makioka, Ken Takaki,* and Yuzo Fujiwan***

Department of Applied Chemistry, Faculty of Engineering, Hiroshima University,

1-4-1 Kagamiyama, Higashi-Hiroshima 724, Japan

A b&act: Ytterbium metal reacts with trimethytsilyl bromide (TMS-Br) to give divaknt YbBr2. YbBr2 thusformed in situ, causes **coupling** *reactions ofaliplvlrir ketones and a&~ketones to give bissilylated 1.2-dials and l&-ketones, respectively. in good yields.*

Lanthanide mediated reaction has played an important role in organic synthesis.¹ Particularly, low-valent lanthanide reagents such as samarium diiodide **(SmI2) have** been widely used to the organic reactions as one electron reductant. We have developed some lanthanide mediated reactions of carbonyl compounds.² In continuing studies on exploring lanthanide mediated reactions, we have investigated the coupling reactions of aliphatic ketones and α , β -unsaturated ketones using a novel reducing agent, Y b/TMS-Br.

pinacol coupling at the l-position **of** ketones using low-valent transition metals such as samarium(II) has been extensively studied and proved to be efficient for a C-C bond formation.³ Oxidative homocoupling at the 2-position of ketones can be achieved by nickel peroxide. 4 On the contrary, reductive homocoupling reaction at the 3-position of ketones was achieved with electrochemically⁵ or some reducing reagents such as Hg(Na),^{6a} Li,^{6b} organomanganese,^{6c} and Bu₃SnH^{6d} using α , β -unsaturated ketones. We report here that the Yb/TMS-Br reagent promoted coupling reactions of cyclic ketones and α , β -unsaturated ketones in THF:HMPA (4:1) to give bissilylated 1,2-diols and 1,6-diketones, respectively, in good yields (Eqs. 1 and 2).

The representative results for the homocoupling reaction of cyclic ketones by Yb/TMS-Br are summarized in Table I. **In** this reaction, bissilylated diols were selectively obtained without the formation of 1,2-did.

The preparation of trimethylsilyl I-(I'-trimethylsilyloxycyclohexyl)cyclohexyl ether is a typical example (entry 2, Table 1): Ytterbium metal (2 mmol, 0.346 mg) was placed in a 20-mL 2-necked flask equipped with a 3-way stopcock and a rubber septa. The flask was replaced with argon. To this flask, THF (4 mL), HMPA (1 mL), cyclohexanone (198 μ L, 2 mmol), and then trimethylsilyl bromide (396 μ L, 4 mmol) were added by a syringe successively. The mixture was degassed **through** repetition of three freeze-pumpthaw cycles. The mixture was stirred at room temperature for 5 h. Usual work-up followed by column chromatography (SiO₂, hexane) gave trimethylsilyl 1-(1'-trimethylsilyloxycyclohexyl)cyclohexyl ether (308 mg, 89%), which gives satisfactory IR, NMR, Mass spectral data and elemental analysis. Trimethyisiiyi bromide is the best reagent for these coupling reactions; siiyi chlorides and iodides are not effective. In addition, these reactions do not occur with ytterbium metal alone. The mixed solvent (THF:HMPA=4:1) gives the best result, but THF or HMPA alone is not effective. The reaction of 3-methylcyclohexanone affords two diastereomers (dl:meso) in the ratio of 5.2:1 according to the ¹³C NMR analysis (entry 5. Table 1). Sterically hindered bulky ketones such as adamantanone and menthone are not reactive.

entry	ketone	product	yield/%b
		TMSO OTMS	62 ^c
2		TMSO OTMS	89
3		TMSO OTMS	31 ^c
4		TMSO OTMS	39
5		TMSO OTMS	57 $(5.2:1)^d$

Table 1. Yb/TMS-Br Promoted Coupling of Cyclic Ketone8

a) Ketone (2mmoI), Yb (Immol), TMSBr (3mmol), THF (4mL)-HMPA (ImL), rt, 5 h. b) Isolated yield bazwd on the ketone. c) Reaction time 15 h. d) Diastereomer ratio was determined by $13C$ NMR.

There are many reports on inter- and intramolecular reductive coupling reactions at the 3-position of α, β unsaturated carbonyl compounds. Calas et al. reported that the reaction of α , β -unsaturated ketone with Mg-TMSCI in HMPA gave Michael adducts of silyi anion along with the **3,3'-coupling** adducts.' Furthermore, Larson and White depicted a formation of the 3,3'-coupling adducts in the reaction of benzyiideneacetone with Yb(II)/NH3 in a lower yield.⁸ We also detected the 3,3'-coupling adducts as a minor product in the reaction of chalcone with ytterbium metal.⁹ In the case of α, β -unsaturated esters, cerium(IV) assisted electrochemical reduction 10 and samarium iodide promoted homocoupling reaction 11 are reported. We have found that Yb/TMS-Br can cause the 3,3'-coupling reaction of α , β -unsaturated ketones to give 1,6-diketones (Eq. 2). The representative results are listed in Table 2. Both cyclic and acyclic enones undergo coupling. Coupling of

2-methyl- or 3-methyl-2-cyclohexenones gives a single diastereomer (entries 5 and 6, Table 2), but, the reaction of other enones is not stereoselective and gives two diastereomers (dl:meso=1:1). Electrochemical reaction of enol acetates is reported to be non-stereoselective to give a dl : meso 1:1 mixture.¹² In the reaction, small amounts of saturated ketones were also formed along with 1,6-diketones (entries 1 and 5, Table 2).

entry	ketone	condition ^b , (time/h)	product	yield/ $\%$ ^c
$\mathbf{1}$	$CH_3 \swarrow$ $\mathbf{c_2H_5}$ о	A(72) C_2H_5	CH ₃ $CH3$ O	$\mathbf{C_2H_5}$ 67 ^{d,e}
$\overline{\mathbf{2}}$	$C_4H_9 \searrow$ П Ω	CH ₃ A(10) CH ₃	TMSO C_4H_9 C ₄ H ₉ OTMS	CH ₃ $52^{e,f}$
3	\equiv 0	A(40) B(4)	o o	45° 68 ^e
4	\mathbf{c}	A(17) B(3)		92 ^e 90 ^e
5	$= 0$	B(8)		92 ^g
6	$= 0$	A(17) B(17)		68 $(30)^h$ 32 $(60)^h$
$\overline{7}$	$= 0$	A(6) B(12)		46 ^e 46 ^e

Table 2. Yb/TMS-Br Promoted Coupling of α , β -Unsaturated Ketones⁴

a) Ketone (1 mmol), Yb (1 mmol), TMS-Br (2 mmol). b) Condition A; THF (2.4 mL)-HMPA (0.6 mL), rt. Condition B; THF (3 mL), reflux. c) GLC yield based on ketones. d) 3-Hexanone $(25%)$ was also formed. e) The dl : meso ratio $(1:1)$ was determined by ¹³C NMR. f) (2E,6E)- and (2Z,6E)-adducts (3:1) were formed. g) 2-Methylcyclohexanone (6%) was also formed. h) The yield in parentheses is of 3-(5'-methylcyclohexa-1',5'dienyl)-3-methylcyclohexanone.

In order to clarify the active species of the present Yb/TMS-Br reagent, the reaction of triethylsilyl bromide with ytterbium metal in THF was carried out. The reaction gave a green suspension as is the case of the reaction of trimethylsilyl bromide (TMS-Br). The quantitative formation of triethylsilane, which is formed by the abstraction of H- radical from THF by silyl radical (R3Si-), was recognized in a mother solution of this suspension, and any hexaethyldisilane, the coupling product was not detected. (Eq. 3). X-ray analysis of the residual powder separated from this suspension were in fair agreement with the authentic YbBr₂ prepared from the reaction of HgBr₂ with Yb. 13 In addition, the reaction of the powder with 2-methyl-2-cyclohexenone gave the 1,6-diketone in 92% yield. These results show that the Yb/TMS-Br reagent generates YbBr₂ in situ and YbBr₂ thus formed, acts as a single electron reductant for these coupling reactions.

$$
Yb + 2 Et_3SiBr \xrightarrow{\text{THF-HMPA}} YbBr_2 + 2 Et_3SiH \qquad (3)
$$

Acknowledgment

The authors gratefully acknowledge Shin-E&r **Chemical Co.,** Ltd. for the **generous** gift of some silicone compounds. This work was supported by the Grant-in-Aid for Scientific Research on Priority Area of Reactive Grganometallics No. 05236106 from the Ministry of Education, Science and Culture, Japan.

References

- 1. Molander, G. A. *Chem. Rev.* **1992, 92, 29.**
- 2. Fujiwara, Y.; Takaki, K.; Taniguchi, Y. *J. Alloys and Compds.* 1993, 192, 200; Makioka, Y.; Nakagawa, I.; Taniguchi, Y.; Takaki, K.; Fujiwara, Y. J. Org. Chem. **1993**, 58, 4771 and references cited therein.
- **3.** (a) Lebrun, A.; Namy, J.-L.; Kagan, K. B. *Tetrahedron Letr.* **1993, 34,** 2311 and references cited therein. (b) Akane, N.; Kanagawa, Y.; Nishiyama, Y.; Ishii, Y. *Chem. Lett.* **1992,** 2431. (c) Yoshizawa, T.; Hatajima, T.; Amano, H.; Imatnoto, T. *Nippon Kagaku Kaishi* **1993, 482.**
- **4.** Hawkins, E. G. E.; Large, R. *J. Chem. Sot.. Perkin Trans. I 1974, 280.*
- **5.** Bastida, L. M.; Birillas, E.; Costa, J. M. *J. Electrochem. Sot. 199* **1,** *138, 2289,* Duarte, M. Y.; Pezzatini, G.; Guidelli, R. *J. Chem. Sot.. Faraday Trans. I 1988, 84, 367.*
- **6.** (a) Touboul, E.; Weisbuch, F.; Wiemann, J. Bull. Sot. *Chim. Fr.* 1967, 4291. (b) Morizur, J.-P.; Furth, B.; Kossanyi, J. *Bull. Soc. Chim. Fr.* 1967, 1422. (c) Cahiez, G.; Alami, M. *Tetrahedron Lett.* **1986,27,569.** (d) Enholm. E. J.; Kinter, K. S. *J. Am.* **Chem. Sot. 1991, 113, 77%**
- **7.** Dunogues, J.; Calas, R.; Bolourtchian, M.; Biran, C.; Duffaut, N. *J. Organomet. Chem.* 1973, 57, 55.
- **8.** White, J. D.; Larson, G. L. *J. Org. Chem. 1978, 43, 4555.*
- **9.** Takaki, K.; Beppu, F.; Tanaka, S.; Tsubaki, Y.; Jintoku, T.; Fujiwara, Y. *J. Chem. Soc., Chem. Commun. 1990,* 516.
- 10. Mo&s, L.; Baizer, M. M.; Little, R. D. *J. Org. Chem.* **1986, 51, 4498.**
- 11. Inanaga, J.; Handa, Y.; Tabuchi, T.; Otsubo, K.; Yamaguchi, M.; Hanamoto, T. *Tetrahedron Leti. 1991,32, 6557.*
- 12. Maekawa, H.; Nakano, K.; Hirashima, T.; Nishiguchi, I. *Chem. Lett.* 1991, 1661.
- 13. Voos-Esquivel, C. A.; Eick, H. A. *J. Solid State* Chem. 1987, 67, 29 1.

(Received in Japan 27 January 1994; accepted 25 March 1994)