

0040-4039(94)E0722-A

Yb/TMS-Br Promoted Homocoupling Reactions of Aliphatic Ketones and α,β-Unsaturated Ketones

Yuki Taniguchi,^{*} Manabu Nakahashi, Tatsuhiro Kuno, Masumi Tsuno, Yoshikazu Makioka, Ken Takaki,^{*} and Yuzo Fujiwara^{*}

Department of Applied Chemistry, Faculty of Engineering, Hiroshima University,

1-4-1 Kagamiyama, Higashi-Hiroshima 724, Japan

Abstract: Ytterbium metal reacts with trimethylsilyl bromide (TMS-Br) to give divalent YbBr₂. YbBr₂ thus formed in situ, causes coupling reactions of aliphatic ketones and α,β -unsaturated ketones to give bissilylated 1,2-diols and 1,6-ketones, respectively, in good yields.

Lanthanide mediated reaction has played an important role in organic synthesis.¹ Particularly, low-valent lanthanide reagents such as samarium diiodide (SmI₂) have been widely used to the organic reactions as one electron reductant. We have developed some lanthanide mediated reactions of carbonyl compounds.² In continuing studies on exploring lanthanide mediated reactions, we have investigated the coupling reactions of aliphatic ketones and α , β -unsaturated ketones using a novel reducing agent, Yb/TMS-Br.

Pinacol coupling at the 1-position of ketones using low-valent transition metals such as samarium(II) has been extensively studied and proved to be efficient for a C-C bond formation.³ Oxidative homocoupling at the 2-position of ketones can be achieved by nickel peroxide.⁴ On the contrary, reductive homocoupling reaction at the 3-position of ketones was achieved with electrochemically⁵ or some reducing reagents such as Hg(Na).^{6a} Li,^{6b} organomanganese,^{6c} and Bu₃SnH^{6d} using α , β -unsaturated ketones. We report here that the Yb/TMS-Br reagent promoted coupling reactions of cyclic ketones and α , β -unsaturated ketones in THF:HMPA (4:1) to give bissilylated 1,2-diols and 1,6-diketones, respectively, in good yields (Eqs. 1 and 2).

The representative results for the homocoupling reaction of cyclic ketones by Yb/TMS-Br are summarized in Table 1. In this reaction, bissilylated diols were selectively obtained without the formation of 1,2-diol.

The preparation of trimethylsilyl 1-(1'-trimethylsilyloxycyclohexyl)cyclohexyl ether is a typical example (entry 2, Table 1): Ytterbium metal (2 mmol, 0.346 mg) was placed in a 20-mL 2-necked flask equipped with a 3-way stopcock and a rubber septa. The flask was replaced with argon. To this flask, THF (4 mL), HMPA (1

mL), cyclohexanone (198 μ L, 2 mmol), and then trimethylsilyl bromide (396 μ L, 4 mmol) were added by a syringe successively. The mixture was degassed through repetition of three freeze-pump-thaw cycles. The mixture was stirred at room temperature for 5 h. Usual work-up followed by column chromatography (SiO₂, hexane) gave trimethylsilyl 1-(1'-trimethylsilyloxycyclohexyl)cyclohexyl ether (308 mg, 89%), which gives satisfactory IR, NMR, Mass spectral data and elemental analysis. Trimethylsilyl bromide is the best reagent for these coupling reactions; silyl chlorides and iodides are not effective. In addition, these reactions do not occur with ytterbium metal alone. The mixed solvent (THF:HMPA=4:1) gives the best result, but THF or HMPA alone is not effective. The reaction of 3-methylcyclohexanone affords two diastereomers (*dl:meso*) in the ratio of 5.2:1 according to the ¹³C NMR analysis (entry 5, Table 1). Sterically hindered bulky ketones such as adamantanone and menthone are not reactive.

entry	ketone	product	yield/% ^b	
1			62°	
2			89	
3			31 ^c	
4			39	
5			57 (5.2:1) ^d	

Table 1. Yb/TMS-Br Promoted Coupling of Cyclic Ketones^a

a) Ketone (2mmol), Yb (2mmol), TMSBr (3mmol), THF (4mL)-HMPA (1mL), rt, 5 h. b) Isolated yield based on the ketone. c) Reaction time 15 h. d) Diastereomer ratio was determined by $^{1.3}$ C NMR.

There are many reports on inter- and intramolecular reductive coupling reactions at the 3-position of α , β unsaturated carbonyl compounds. Calas et al. reported that the reaction of α , β -unsaturated ketone with Mg-TMSCl in HMPA gave Michael adducts of silyl anion along with the 3,3'-coupling adducts.⁷ Furthermore, Larson and White depicted a formation of the 3,3'-coupling adducts in the reaction of benzylideneacetone with Yb(II)/NH3 in a lower yield.⁸ We also detected the 3,3'-coupling adducts as a minor product in the reaction of chalcone with ytterbium metal.⁹ In the case of α , β -unsaturated esters, cerium(IV) assisted electrochemical reduction¹⁰ and samarium iodide promoted homocoupling reaction¹¹ are reported. We have found that Yb/TMS-Br can cause the 3,3'-coupling reaction of α , β -unsaturated ketones to give 1,6-diketones (Eq. 2). The representative results are listed in Table 2. Both cyclic and acyclic enones undergo coupling. Coupling of 2-methyl- or 3-methyl-2-cyclohexenones gives a single diastereomer (entries 5 and 6, Table 2), but, the reaction of other enones is not stereosclective and gives two diastereomers (dl:meso=1:1). Electrochemical reaction of enol acetates is reported to be non-stereosclective to give a dl:meso=1:1 mixture.¹² In the reaction, small amounts of saturated ketones were also formed along with 1,6-diketones (entries 1 and 5, Table 2).

entry	ketone	condition ^b , (time/h)	product	yield/%°
1	CH ₃ C ₂	H ₅ A(72) C ₂ H	$\begin{array}{c} \mathbf{O} \mathbf{CH}_3 \\ \mathbf{CH}_3 \mathbf{O} \\ \mathbf{CH}_3 \mathbf{O} \end{array}$	2 ^{H5} 67 ^{d, e}
2	C4H9	H ₃ A(10) CH		H _{3 52^{e, r} S}
3	©=0	A(40) B(4)		4 5° 6 8°
4	(⊨o	A(17) B (3)		9 2° 9 0°
5	\=o	B (8)		9 2 ^g
6	∫_=o	A(17) B(17)		68 (30) ^h 32 (60) ^h
7	 o	A (6) B(12)	Ů–Ů	46° 46°

Table 2. Yb/TMS-Br Promoted Coupling of α,β -Unsaturated Ketones⁴

a) Ketone (1 mmol), Yb (1 mmol), TMS-Br (2 mmol). b) Condition A; THF (2.4 mL)-HMPA (0.6 mL), rt. Condition B; THF (3 mL), reflux. c) GLC yield based on ketones. d) 3-Hexanone (25%) was also formed. e) The *dl:meso* ratio (1:1) was determined by ^{1 3}C NMR. f) (2E,6E)- and (2Z,6E)-adducts (3:1) were formed. g) 2-Methylcyclohexanone (6%) was also formed. h) The yield in parentheses is of 3-(5'-methylcyclohexa-1',5'dienyi)-3-methylcyclohexanone. In order to clarify the active species of the present Yb/TMS-Br reagent, the reaction of triethylsilyl bromide with ytterbium metal in THF was carried out. The reaction gave a green suspension as is the case of the reaction of trimethylsilyl bromide (TMS-Br). The quantitative formation of triethylsilane, which is formed by the abstraction of H• radical from THF by silyl radical (R₃Si•), was recognized in a mother solution of this suspension, and any hexaethyldisilane, the coupling product was not detected. (Eq. 3). X-ray analysis of the residual powder separated from this suspension were in fair agreement with the authentic YbBr₂ prepared from the reaction of HgBr₂ with Yb.¹³ In addition, the reaction of the powder with 2-methyl-2-cyclohexenone gave the 1,6-diketone in 92% yield. These results show that the Yb/TMS-Br reagent generates YbBr₂ *in situ* and YbBr₂ thus formed, acts as a single electron reductant for these coupling reactions.

Yb + 2 Et₃SiBr $\xrightarrow{\text{THF-HMPA}}$ YbBr₂ + 2 Et₃SiH (3)

Acknowledgment

The authors gratefully acknowledge Shin-Etsu Chemical Co., Ltd. for the generous gift of some silicone compounds. This work was supported by the Grant-in-Aid for Scientific Research on Priority Area of Reactive Organometallics No. 05236106 from the Ministry of Education, Science and Culture, Japan.

References

- 1. Molander, G. A. Chem. Rev. 1992, 92, 29.
- 2. Fujiwara, Y.; Takaki, K.; Taniguchi, Y. J. Alloys and Compds. 1993, 192, 200; Makioka, Y.; Nakagawa, I.; Taniguchi, Y.; Takaki, K.; Fujiwara, Y. J. Org. Chem. 1993, 58, 4771 and references cited therein.
- (a) Lebrun, A.; Namy, J.-L.; Kagan, K. B. *Tetrahedron Lett.* 1993, 34, 2311 and references cited therein.
 (b) Akane, N.; Kanagawa, Y.; Nishiyama, Y.; Ishii, Y. *Chem. Lett.* 1992, 2431.
 (c) Yoshizawa, T.; Hatajima, T.; Amano, H.; Imamoto, T. *Nippon Kagaku Kaishi* 1993, 482.
- 4. Hawkins, E. G. E.; Large, R. J. Chem. Soc., Perkin Trans. 11974, 280.
- 5. Bastida, L. M.; Birillas, E.; Costa, J. M. J. Electrochem. Soc. 1991, 138, 2289; Duarte, M. Y.; Pezzatini, G.; Guidelli, R. J. Chem. Soc., Faraday Trans. 1 1988, 84, 367.
- (a) Touboul, E.; Weisbuch, F.; Wiemann, J. Bull. Soc. Chim. Fr. 1967, 4291. (b) Morizur, J.-P.; Furth, B.; Kossanyi, J. Bull. Soc. Chim. Fr. 1967, 1422. (c) Cahiez, G.; Alami, M. Tetrahedron Lett. 1986, 27, 569. (d) Enholm, E. J.; Kinter, K. S. J. Am. Chem. Soc. 1991, 113, 7784.
- 7. Dunogues, J.; Calas, R.; Bolourtchian, M.; Biran, C.; Duffaut, N. J. Organomet. Chem. 1973, 57, 55.
- 8. White, J. D.; Larson, G. L. J. Org. Chem. 1978, 43, 4555.
- 9. Takaki, K.; Beppu, F.; Tanaka, S.; Tsubaki, Y.; Jintoku, T.; Fujiwara, Y. J. Chem. Soc., Chem. Commun. 1990, 516.
- 10. Moëns, L.; Baizer, M. M.; Little, R. D. J. Org. Chem. 1986, 51, 4498.
- 11. Inanaga, J.; Handa, Y.; Tabuchi, T.; Otsubo, K.; Yamaguchi, M.; Hanamoto, T. Tetrahedron Lett. 1991, 32, 6557.
- 12. Maekawa, H.; Nakano, K.; Hirashima, T.; Nishiguchi, I. Chem. Lett. 1991, 1661.
- 13. Voos-Esquivel, C. A.; Eick, H. A. J. Solid State Chem. 1987, 67, 291.

(Received in Japan 27 January 1994; accepted 25 March 1994)